
N87-20303

Trackin$ the GLOMR Satellite

by

Keith W. Reiss, Ph.D. and Jason C. O'Neil

Defense Systems, Inc. (DSI), McLean, Virginia

Abstract

The task of day-to-day low orbiting satellite tracking utilizing the NAVSPASUR

orbital elements is discussed and methods for improving pass time predictions are

presented. Estimates are needed for preprogramming of satellite-initiated communi-

cations scheduling which requires an accuracy of approximately 30 seconds. This can

be achieved by removing the variance associated with the NAVSPASUR D= (decay) term.

Finally, the "shock" evidenced in GLOMR's orbit on February 7, 1986 is documented

and attributed to a severe solar storm with immediately enhanced drag. GLOMR's life

expectancy in orbit is now estimated to have dropped approximately 17% with end of

orbit in early February, 1987.

Background

STS 61-A lifted off on October 30, 1985, carrying aloft DARPA's GLOMR satellite

stowed in its GAS canister fixed in the port section of the cargo bay. It was a

flawless launch and the DSI ground control team anxiously awaited the deployment of

the 64.5 kg store/forward communications satellite, GLOMR (Global Low Orbiting Mes-

sage Relay). Just south of the Fox and Shumagin Islands of the Aleutian chain, on

Orbit 9, about twelve and a half hours into the mission, GLOMR bolted gracefully

from its "can" into a nearly circular orbit some 326 km above the Earth. The 62

faceted nearly spherical object, with its four top-mounted antennae, prompted astro-

naut Sally Ride to exclaim that it looked like something from Alien or Sesame Street!

Finally, on Orbit 17, the craft passed solidly within DSI's McLean, Virginia-based

line of sight and we completed our first contact, and thus began the GLOMR mission

which was 259 days long on July 17, 1986. Complete details of the DSI GLOMR design,

fabrication, certification, and mission are contained in the 1985 GAS Experimenter's

Symposium paper titled "The GLOMR Satellite, Payload G-308".



Satellite Tracking and Operations

Once successfully deployed, GLOMR's position has been obtained on a periodic

basis from NAVSPASUR "one-line" orbital data elements. Our operating technique

often included the requirement to initiate contact with the spacecraft at a pre-

determined elevation angle and not before, if possible. Additionally, we chose not

to carry over the communication into the region of highest rate of Doppler change,

and thus limited our contact windows to two intervals on the ascending and descend-

ing portion of each significantly elevated pass. To operate successfully in this

manner required timing accuracies on the order of about 30 seconds. The Keppler

problem was solved using Brown's non-iterative solution together with the J2

perturbation and a decay term provided as the NAVSPASUR element D 2. Calculational

accuracy was maintained at double precision as predictions of satellite positions

were converted to terrestrial azimuth and elevation angles and slant ranges accord-

ing to an ellipsoidal Earth model. With these modest tools, we set out to "track"

GLOMR over a long period of time but with projections forward by approximately ten

to twenty days. Since GLOMR must initiate contact with the ground control station,

it must normally be "programmed" via an uplinked series of communicate orders, i.e.,

a schedule. Then in accordance with the onboard clock, the internal orders are

carried out based on the computed communication windows generated by the orbital

model.

Observed Tracking Sensitivities

It was clear that the NAVSPASUR tracking software was unsettled within the

first two weeks of operation on GLOMR. No decay term was reported during this

interval and some of the orbital parameters exhibited fluctuations (see the orbital

eccentricity data of Figure i during this period). After the initial settling

period, the data elements have maintained consistent quality and characteristics.

After two months in orbit, GLOMR exhibited a true period of regression of the line

of nodes of 79.15 days (precession of the orbital plane) and a period of elliptic

axis (line of apsides) rotation of 190.0 days (in the orbital plane). However, it

was learned early on that the D2 Decay Coefficient reported in radians per Herg

squared was a potential problem. Major fluctuations are evident in this term as

depicted in Figure 2. An analysis of the sensitivity of the tracking timing error

due solely to these fluctuations in December 1985 showed that an error of +/-i

minute could result after i0 days, increasing up to +/-3 minutes in 26 days. If,

instead of directly plugging in the NAVSPASUR D 2 term one were to compute the

average or "smoothed D2-Value" and use this instead, tracking error was reduced by

84% (i.e., from -178 seconds down to -29 seconds). It is presumed that the D 2 term

is a differentially derived parameter or a filter product that does not well reflect

the average steady decline of the orbit. This subject will be revisited below.

Given that fluctuations in the NAVSPASUR elements are typical (a presumption based

only on the GLOMR observations), then further examination of other sensitivity co-

efficients was appropriate. Using the February 5, 1986 epoch data as a basis, the

following sensitivities were computed using the orbit program:



Orbital Parameter CPATiming Error (sec) Unit
Parameter Changeper Day

MeanAnomalyMO
MeanMotion M1

Decay Coefficient D 2

Eccentricity eO

Argument of Perigee _o

Long of Ascending Node X O

Inclination i O

-500.0 sec/day/_M O

-99,161.58 sec/day/_M 1

-1,233.33 sec/day/_D 2

+250.0 sec/day/_e O

-468.33 sec/day/_ O

-233.33 sec/day/_X O

+2,500.0 sec/day/_i O

The net timing error can be estimated as the sum of products of the above error

rates times the average values of the corresponding orbital parameters. Using the

most severe fluctuations of all parameters over the entire period of observation,

the "worst case" scenario would result in timing errors of about a minute per day.

As noted, with the "removal" of the D 2 fluctuation and use of a smoothed value,

errors on the order of one second per day are often attained. Nevertheless, atten-

tion to the behavior of all the orbital elements is well justified as we shall see

next.

Solar Disturbance of February 1986

At low altitudes, satellites face the unescapable force of atmospheric

friction. As the altitude declines the orbital altitude decreases and the satellite

speeds up in an accelerating death-spiral. As we studied GLOMR's gradual descent

we reported a rate of approximately -0.ii km/day throughout the first i00 days of

orbit. However, after February 7, 1986, pass timings (communications windows) be-

gan to deviate significantly from the earlier predictions used to program the

satellite processors. In fact, the orbit seemed to have decayed abruptly with the

result that we accumulated an error of approximately -11 sec/day. Due both to the

pre-scheduling of the GLOMR contacts and to the day late arrival of the NAVSPASUR

Charlie Elements, the immediate cause of the shift was unclear. Once the NAVSPASUR

data became available, it appeared that a substantial "shock" occurred on February

7th (day 99 on the various graphs). Sudden enhancement of the atmospheric density

at this time buffeted GLOMR and induced immediate "ringing" of the NAVSPASUR track-

ing filters as evidenced in the eccentricity (Figure i) and the sharp upward jump

of the decay term as shown in Figure 2. But by far more significant, yet not

obvious to the casual observer, was the ramp in the mean motion curve. Using the

equivalent mean altitude as depicted in Figure 3, three features are observable:

(i) The small dip on day 87 (January 26, 1986);

(2) A second dip peaked at day 104 (February 12, 1986);

(3) A sharp slope change at_day 99 (February 7, 1986).

The first dip is not real since the altitude immediately recovers and follows

the well established straight line behavior with a rate of -0.411 nmi/week prior to

the disturbance which certainly occurred on the 7th of February. The second dip is

probably NAVSPASUR tracker response to the immediate change in the derivative of

the mean motion parameter. This is real since from this point on the orbit is now

again on a "straight line" descent with a rate of -0.5946 nmi/week. This represents

a -44.7% change in the rate of descent and clearly will affect the GLOMR mission
lifetime.



Other evidence includes the decay term D2 of Figure 2, which shows two
average line fits one before and one after the disturbance:

SmoothedDecay Term Standard Deviation

Before: 0.01036
After: 0.01482 (43%increase)

0.001356
0.002381 (76%increase)

The 43%increase in the decay term matches the 44%drop in the rate of descent
noted above since the rate of descent is approximately related to the decay term
as:

da/dt = -(4/3)E-5 * D2 * a2"s

where a is the semi-major axis. Using the pre-disturbance D2 -value (smooth) of
0.10362, the computedrate of changeof altitude is -0.402 nmi/week which agrees
with the curve fit value of -0.411 reported above. Likewise, the post-disturbance
value is computedto be -0.5755 nmi/week which comparesnicely with the previous
value of -0.5946. At least in terms of "smoothed" D2-values, there is agreement
between the orbital parameters and the documentedobservances. It is suggested
that a "long-term" fit to the rate of descent curve to get da/dt (nmi/wk) inserted
into the following equation will produce an optimum smooth D2-value:

D2 (smooth) = 0.029051 * (da/dt) * [(3444 + ALT)/3444]-2"s

In this expression ALT is the current meanaltitude in nmi. The approximation
presumesa nearly circular orbit.

NAVSPASURreported to us that the storm was the worst in its history and that
the GeomagneticIndex (which had been in the 30-40 range) jumped to 89, 236, and
98 for February 7, 8, and 9, respectively. Further evidence included a jump in the
Exospheric Temperature from the 700s up to 997, 1164, and i001. Nowthat the storm
effects on the orbital parameters were established, the ramifications to GLOMR's
lifetime were explored.

GLOMR Orbital Life Expectancy

Assuming a nearly circular orbit and further that 145 km marks the essential

"terminal" altitude, the orbital lifetime is approximated by:

n _

145 km

f d(ALT)
(Cd* A/m)* 0 (ALT)*(M*G*ALT)-O'5

ALT o

where M is the mass of the Earth, G is the Universal Gravitation Coefficient, m is

the satellite mass (64.5 kg), A is the satellite projected area (0.162 m2), C d is

the drag coefficient, and p is the atmospheric density. The CIRA 1972 Mean Ref-

erence Atmosphere was used (see Figure 4) via curve fit in the 90 to 400 km regime:
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log p(kg/m 3) = -8.384 * (I+ALT * 9.079795E-4) * (I-(67.75/ALT) 3)

ALT is expressed in km. The lifetime integral L was evaluated for the two situations:

before and after the large storm of February, 1986. Figure 5 presents these results.

The drag coefficient was empirically fitted to data in the two regimes so that the

altitude dynamic matched the computed values. The use of an emperical value also

allows for the fact that the orbit is slightly eccentric. The before and after

values for Cd are, respectively, 0.43455 and 0.52513. If Cd is approximately con-

stant, then this is equivalent to an increase of 21% in atmospheric density. GLOMR's

lifetime has thus been reduced by about 17.3% and, according to the model, should

fall to Earth 365 days past the date of the storm or about February 7, 1987. This

assumes no further change in drag between the GLOMR altitude of 290 km on July 17,
1986 and the 145 km value which should occur six months from now.
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LONG TE_.I BEHAVIOR OF THE GLOMR ORBITAL ECCENTRICITY
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FIGURE 2

NAVSPASUR D 2 DECAY COEFFICIENT WITH SUPEr{IMPOSED LMS

LINB FITTED BEFORE AND AFTER THE SOLAR STORM
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FIGURE 3

GLOMR'S DESCENT IS C}_RTED HERE. THE SLOPE CHANGE AT DAY 99

CAN EASILY BE SEEN WITH A RULER: INITIAL RATE =-0.411NMI/WEEK

WITH A VALUE OF -0.5946 NMI/WEEK AFTER THE DISTURBANCE ON THAT DATE.
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FIGURE 4

COSPAR INTERNATIONAL REFERENCE ATMOSPHERE (CIRA) 1972

ATMOSPHERIC DENSITY IN THE GLOMR OPERATIONAL REGIME WITH EMPERICAL

FUNCTIONAL CURVEFIT USED IN GLOMR ORBITAL LIFETIME MODEL.
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